Liver segmentation in MRI: A fully automatic method based on stochastic partitions
نویسندگان
چکیده
There are few fully automated methods for liver segmentation in magnetic resonance images (MRI) despite the benefits of this type of acquisition in comparison to other radiology techniques such as computed tomography (CT). Motivated by medical requirements, liver segmentation in MRI has been carried out. For this purpose, we present a new method for liver segmentation based on the watershed transform and stochastic partitions. The classical watershed over-segmentation is reduced using a marker-controlled algorithm. To improve accuracy of selected contours, the gradient of the original image is successfully enhanced by applying a new variant of stochastic watershed. Moreover, a final classifier is performed in order to obtain the final liver mask. Optimal parameters of the method are tuned using a training dataset and then they are applied to the rest of studies (17 datasets). The obtained results (a Jaccard coefficient of 0.91 ± 0.02) in comparison to other methods demonstrate that the new variant of stochastic watershed is a robust tool for automatic segmentation of the liver in MRI.
منابع مشابه
A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملNeural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images
Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملAutomatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...
متن کاملAutomatic Liver Segmentation in Contrast-enhanced MRI
A fully automated method for liver segmentation in contrast enhanced abdominal MRI scans is presented. Liver shape and volume are obtained utilizing a context based approach. Compared to manual segmentation, the obtained liver volumes differ less than 10%. The mean sensitivity of 0.92 is comparable to other published liver segmentation methods.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer methods and programs in biomedicine
دوره 114 1 شماره
صفحات -
تاریخ انتشار 2014